Probabilistic Adaptive Computation Time

نویسندگان

  • Michael Figurnov
  • Artem Sobolev
  • Dmitry P. Vetrov
چکیده

We present a probabilistic model with discrete latent variables that control the computation time in deep learning models such as ResNets and LSTMs. A prior on the latent variables expresses the preference for faster computation. The amount of computation for an input is determined via amortized maximum a posteriori (MAP) inference. MAP inference is performed using a novel stochastic variational optimization method. The recently proposed Adaptive Computation Time mechanism can be seen as an ad-hoc relaxation of this model. We demonstrate training using the generalpurpose Concrete relaxation of discrete variables. Evaluation on ResNet shows that our method matches the speed-accuracy trade-off of Adaptive Computation Time, while allowing for evaluation with a simple deterministic procedure that has a lower memory footprint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of a Probabilistic Re-Entrant Line Bounded by Limited Operation Utilization Time

This paper presents an analytical model based on mean value analysis (MVA) technique for a probabilistic re-entrant line. The objective is to develop a solution method to determine the total cycle time of a Reflow Screening (RS) operation in a semiconductor assembly plant. The uniqueness of this operation is that it has to be borrowed from another department in order to perform the production s...

متن کامل

Thesis Proposal Parallel Learning and Inference in Probabilistic Graphical Models

Probabilistic graphical models are one of the most influential and widely used techniques in machine learning. Powered by exponential gains in processor technology, graphical models have been successfully applied to a wide range of increasingly large and complex real-world problems. However, recent developments in computer architecture, large-scale computing, and data-storage have shifted the f...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

Adaptive Mixtures of Probabilistic Transducers

We describe and analyze a mixture model for supervised learning of probabilistic transducers. We devise an on-line learning algorithm that eeciently infers the structure and estimates the parameters of each probabilistic transducer in the mixture. Theoretical analysis and comparative simulations indicate that the learning algorithm tracks the best transducer from an arbitrarily large (possibly ...

متن کامل

Efficient Probabilistic Parameter Synthesis for Adaptive Systems

Probabilistic modelling has proved useful to analyseperformance, reliability and energy usage of distributed ornetworked systems. We consider parametric probabilistic models,in which probabilities are specified as expressions over a setof parameters, rather than concrete values. We address theparameter synthesis problem for parametric Markov decisionprocesses and paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.00386  شماره 

صفحات  -

تاریخ انتشار 2017